-1-   -2-   -3-   -4-   -5-


31. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. Далее эта запись обрабатывается по следующему правилу:

а) если сумма цифр в двоичной записи числа чётная, то к этой записи справа дописывается 0, а затем два левых разряда заменяются на 10;

б) если сумма цифр в двоичной записи числа нечётная, то к этой записи справа дописывается 1, а затем два левых разряда заменяются на 11.

Полученная таким образом запись является двоичной записью искомого числа R.

Например, для исходного числа 610 = 1102 результатом является число 10002 = 810, а для исходного числа 410 = 1002 результатом является число 11012 = 1310.

Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее 50. В ответе запишите это число в десятичной системе счисления.

Ответ


32. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. К этой записи дописываются справа ещё несколько разрядов по следующему правилу:

а) если N чётное, то к нему справа приписываются два нуля, а слева единица;

б) если N нечётное, то к нему справа приписывается в двоичном виде сумма цифр его двоичной записи;

Полученная таким образом запись (в ней как минимум на один разряд больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Например, исходное число 410 = 1002 преобразуется в число 1100002 = 4810, а исходное число 1310 = 11012 преобразуется в число 1101112 = 5510.

Укажите такое число N, для которого число R является наименьшим среди чисел, превышающих 190. В ответе это число запишите в десятичной системе счисления.

Ответ


33. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится троичная запись числа N.

2. Далее эта запись обрабатывается по следующему правилу:

а) если число N делится на 3, то к этой записи дописываются две последние троичные цифры;

б) если число N на 3 не делится, то остаток от деления умножается на 5, переводится в троичную запись
и дописывается в конец числа.

Полученная таким образом запись является троичной записью искомого числа R.

3. Результат переводится в десятичную систему и выводится на экран.

Например, для исходного числа 11 = 1023 результатом является число 1021013 = 307, а для исходного числа 12 = 1103 это число 110103 = 111.

Укажите максимальное число N, после обработки которого с помощью этого алгоритма получается число R, меньшее 159.

Ответ


34. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число следующим образом.

1) Строится двоичная запись числа N.

2) К этой записи дописываются справа ещё два разряда по следующему правилу: если N чётное, в конец числа (справа) дописываются два нуля,
в противном случае справа дописываются две единицы. Например, двоичная запись 1001 числа 9 будет преобразована в 100111.  

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа  результата работы данного алгоритма.

Укажите максимальное число N, для которого результат работы алгоритма будет меньше 140. В ответе это число запишите в десятичной системе счисления.

Ответ


35. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1)    Строится двоичная запись числа N.

2)    К этой записи дописываются справа ещё два разряда по следующему правилу:

а) складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;

б) над этой записью производятся те же действия  справа дописывается остаток от деления суммы её цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите минимальное число R, которое превышает число 111 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.

Ответ


36. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1)    Строится двоичная запись числа N.

2)    К этой записи дописываются справа ещё два разряда по следующему правилу:

а) складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;

б) над этой записью производятся те же действия - справа дописывается остаток от деления суммы её цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите минимальное число R, которое превышает число 99 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.

Ответ


37. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. К этой записи дописываются справа и слева ещё по одному или два разряда по следующему правилу: если N чётное, то в конец числа (справа) дописывается нуль, а в начало числа (слева) дописывается единица; если N нечётное, то в конец числа (справа) и в начало числа (слева) дописываются по две единицы.

Например, для числа 13 двоичная запись 1101 преобразуется в запись 11110111.

Полученная таким образом запись (в ней на два или четыре разряда больше, чем в записи исходного числа N) является двоичной записью искомого
числа R.

Укажите наименьшее число R, превышающее 48, которое может являться результатом работы данного алгоритма. В ответе это число запишите
в десятичной системе счисления.

 Ответ


38. Автомат получает на вход трёхзначное число. По этому числу строится новое число по следующим правилам.

1. Перемножаются первая и вторая, а также вторая и третья цифры исходного числа.

2. Полученные два числа записываются друг за другом в порядке неубывания (без разделителей).

Пример. Исходное число: 631. Произведения: 6 × 3 = 18; 3 × 1 = 3. Результат: 318.

Укажите наибольшее число, при обработке которого автомат выдаст число 621.

 Ответ


39. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. Далее эта запись обрабатывается по следующему правилу:

а) если число чётное, то к двоичной записи числа слева дописывается 10;

б) если число нечётное, то к двоичной записи числа слева дописывается 1 и справа дописывается 01.

Полученная таким образом запись является двоичной записью искомого числа R.

Например, для исходного числа 410 = 1002 результатом является число 2010 = 101002, а для исходного числа 510 = 1012 это число 1101012 = 5310.

Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее чем 516. В ответе запишите это число в десятичной системе счисления.

 Ответ


40. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. Далее эта запись обрабатывается по следующему правилу:

а) если число N делится на 3, то к этой записи дописываются три последние двоичные цифры;

б) если число N на 3 не делится, то остаток от деления умножается на 3, переводится в двоичную запись и дописывается в конец числа.

Полученная таким образом запись является двоичной записью искомого числа R.

3. Результат переводится в десятичную систему и выводится на экран.

Например, для исходного числа 12 = 11002 результатом является число 11001002 = 100, а для исходного числа 4 = 1002 результатом является число 100112 = 19.

Укажите максимальное число N, после обработки которого с помощью этого алгоритма получается число R, меньшее чем 76.

 Ответ


41. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. К этой записи дописываются справа ещё два разряда по следующему правилу:

а) складываются все цифры двоичной записи числа N, и остаток
от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;

б) над этой записью производятся те же действия – справа дописывается остаток от деления суммы её цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите такое наименьшее число N, для которого результат работы данного алгоритма больше десятичного числа 101. В ответе это число запишите
в десятичной системе счисления.

 

 Ответ


42. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. К этой записи дописываются справа ещё два разряда по следующему правилу:

а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;

б) над этой записью производятся те же действия  справа дописывается остаток от деления суммы цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите такое наименьшее число N, для которого результат работы алгоритма больше 76. В ответе это число запишите в десятичной системе счисления.

 Ответ


43. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1) Строится двоичная запись числа N.

2) К этой записи дописываются справа ещё два разряда по следующему правилу: если N нечётное, в конец числа (справа) дописывается сначала ноль, а затем единица. В противном случае, если N чётное, справа дописывается сначала единица, а затем ноль.

Например, двоичная запись 1001 числа 9 будет преобразована в 100101,
а двоичная запись 1100 числа 12 будет преобразована в 110010.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа R – результата работы данного алгоритма.

Укажите максимальное число R, которое меньше 89 и может являться результатом работы данного алгоритма. В ответе это число запишите
в десятичной системе счисления.

 Ответ


-1-   -2-   -3-   -4-   -5-