-1-   -2-   -3-   -4-   -5-


44. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. К этой записи дописываются справа ещё несколько разрядов по следующему правилу:

а) если N чётное, то к нему справа приписываются два нуля, а слева единица;

б) если N нечётное, то к нему справа приписывается в двоичном виде сумма цифр его двоичной записи;

Полученная таким образом запись (в ней как минимум на один разряд больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

3. Результат переводится в десятичную систему и выводится на экран.

Например, исходное число 410 = 1002 преобразуется в число 110000= 4810, а исходное число 1310 = 11012 преобразуется в число 110111= 5510.

Укажите наименьшее число R, превышающее 205, которое может быть результатом работы данного алгоритма. В ответе запишите это число в десятичной системе счисления.

Ответ


45. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1) Строится двоичная запись числа N.

2) К этой записи дописываются справа ещё два разряда по следующему правилу: если N чётное, в конец числа (справа) дописывается сначала ноль, а затем единица.  В противном случае, если N нечётное, справа дописывается сначала единица, а затем ноль.

Например, двоичная запись 100 числа 4 будет преобразована в 10001,
а двоичная запись 111 числа  7 будет преобразована в 11110. 

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа R - результата работы данного алгоритма.

Укажите минимальное число R, которое больше 102 и может являться результатом работы данного алгоритма. В ответе это число запишите
в десятичной системе счисления.

Ответ


46. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1) Строится двоичная запись числа N.

2) К этой записи дописываются справа ещё два разряда по следующему правилу: если N чётное, в конец числа (справа) дописывается сначала ноль, а затем единица.  В противном случае, если N нечётное, справа дописывается сначала единица, а затем ноль.

Например, двоичная запись 100 числа 4 будет преобразована в 10001,
а двоичная запись 111 числа  7 будет преобразована в 11110.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа R – результата работы данного алгоритма.

Укажите максимальное число R, которое меньше 125 и может являться результатом работы данного алгоритма. В ответе это число запишите
в десятичной системе счисления.

Ответ


47. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. К этой записи дописываются справа ещё два разряда по следующему правилу:

а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;

б) над этой записью производятся те же действия – справа дописывается остаток от деления суммы цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите такое наименьшее число N, для которого результат работы алгоритма больше 100. В ответе это число запишите в десятичной системе счисления.

Ответ


48. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число следующим образом.

1) Строится двоичная запись числа N.

2) К этой записи дописываются справа ещё два разряда по следующему правилу: если N чётное, в конец числа (справа) дописываются два нуля,
в противном случае справа дописываются две единицы. Например, двоичная запись 1001 числа 9 будет преобразована в 100111. 

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа – результата работы данного алгоритма.

Укажите максимальное число N, для которого результат работы алгоритма будет меньше 102. В ответе это число запишите в десятичной системе счисления.

Ответ


49. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. Далее эта запись обрабатывается по следующему правилу:

а) если число чётное, то к двоичной записи числа слева дописывается 10;

б) если число нечётное, то к двоичной записи числа слева дописывается 1 и справа дописывается 01.

Полученная таким образом запись является двоичной записью искомого числа R.

3. Результат переводится в десятичную систему и выводится на экран.

Например, для исходного числа 410 = 1002 результатом является число 2010 = 101002, а для исходного числа 510 = 101это число 5310 = 1101012.

Укажите максимальное число R, которое может быть результатом работы данного алгоритма, при условии, что N не больше 12. В ответе запишите это число в десятичной системе счисления.

Ответ


50. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. Далее эта запись обрабатывается по следующему правилу:

а) если сумма цифр в двоичной записи числа чётная, то к этой записи справа дописывается 0, а затем два левых разряда заменяются на 10;

б) если сумма цифр в двоичной записи числа нечётная, то к этой записи справа дописывается 1, а затем два левых разряда заменяются на 11.

Полученная таким образом запись является двоичной записью искомого числа R.

Например, для исходного числа 610 = 1102 результатом является число 10002 = 810, а для исходного числа 410 = 1002 результатом является число 1101= 1310.

Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее 40. В ответе запишите это число в десятичной системе счисления.

Ответ


51. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. К этой записи дописываются справа ещё два разряда по следующему правилу:

а) складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;

б) над этой записью производятся те же действия – справа дописывается остаток от деления суммы её цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите такое наименьшее число N, для которого результат работы данного алгоритма больше числа 89.

В ответе это число запишите в десятичной системе счисления.

Ответ


52. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число следующим образом.

1)    Строится двоичная запись числа N.

2)    К этой записи дописываются справа ещё два разряда по следующему правилу: если N чётное, в конец числа (справа) дописываются два нуля, в противном случае справа дописываются две единицы. Например, двоичная запись 1001 числа 9 будет преобразована в 100111.  

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа  результата работы данного алгоритма.

Укажите минимальное число N, для которого результат работы алгоритма будет больше 134. В ответе это число запишите в десятичной системе счисления.

Ответ


53. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1)    Строится двоичная запись числа N.

2)    К этой записи дописываются справа ещё два разряда по следующему правилу:

а) складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;

б) над этой записью производятся те же действия  справа дописывается остаток от деления суммы её цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите минимальное число R, которое превышает число 83 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.

Ответ


-1-   -2-   -3-   -4-   -5-