-1-   -2-   -3-   -4-   -5-


54. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1) Строится двоичная запись числа N.

2) К этой записи дописываются справа ещё два разряда по следующему правилу: если N нечётное, в конец числа (справа) дописывается сначала ноль, а затем единица. В противном случае, если N чётное, справа дописывается сначала единица, а затем ноль.

Например, двоичная запись 1001 числа 9 будет преобразована в 100101,
а двоичная запись 1100 числа 12 будет преобразована в 110010.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа R  результата работы данного алгоритма.

Укажите максимальное число R, которое меньше 109 и может являться результатом работы данного алгоритма. В ответе это число запишите
в десятичной системе счисления.

Ответ


55. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1)    Строится двоичная запись числа N.

2)    К этой записи дописываются справа ещё два разряда по следующему правилу:

а) складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;

б) над этой записью производятся те же действия  справа дописывается остаток от деления суммы её цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите минимальное число R, которое превышает число 63 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.

Ответ


56. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. Далее эта запись обрабатывается по следующему правилу:

а) если сумма цифр в двоичной записи числа чётная, то к этой записи справа дописывается 0, а затем два левых разряда заменяются на 10;

б) если сумма цифр в двоичной записи числа нечётная, то к этой записи справа дописывается 1, а затем два левых разряда заменяются на 11.

Полученная таким образом запись является двоичной записью искомого числа R.

3. Результат переводится в десятичную систему и выводится на экран.

Например, для исходного числа 610 = 1102 результатом является число 10002 = 810, а для исходного числа 410 = 100это число 1101= 1310.

Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее 19. В ответе запишите это число в десятичной системе счисления.

Ответ


57. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1)    Строится двоичная запись числа N.

2)    К этой записи дописываются справа ещё два разряда по следующему правилу: если N нечётное, в конец числа (справа) дописывается сначала ноль, а затем единица.  В противном случае, если N чётное, справа дописывается сначала единица, а затем ноль.

Например,  двоичная запись 1001 числа 9 будет преобразована в 100101,
а двоичная запись 1100 числа  12 будет преобразована в 110010. 

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа R  результата работы данного алгоритма.

Укажите максимальное число R, которое меньше 96 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.

Ответ


58. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. К этой записи дописываются справа ещё два разряда по следующему правилу:

а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;

б) над этой записью производятся те же действия – справа дописывается остаток от деления суммы цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите такое наименьшее число N, для которого результат работы алгоритма больше 445.

В ответе это число запишите в десятичной системе счисления.

Ответ


59. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. Далее эта запись обрабатывается по следующему правилу:

а) если сумма цифр в двоичной записи числа чётная, то к этой записи справа дописывается 0, а затем два левых разряда заменяются на 10;

б) если сумма цифр в двоичной записи числа нечётная, то к этой записи справа дописывается 1, а затем два левых разряда заменяются на 11.

Полученная таким образом запись является двоичной записью искомого числа R.

Например, для исходного числа 610 = 1102 результатом является число 1000= 810, а для исходного числа 410 = 1002 результатом является число 1101= 1310.

Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, не меньшее 60. В ответе запишите это число в десятичной системе счисления.

Ответ


60. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. К этой записи дописываются справа ещё два разряда по следующему правилу:

а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;

б) над этой записью производятся те же действия справа дописывается остаток от деления суммы цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

3. Результат переводится в десятичную систему и выводится на экран.

Например, для исходного числа 1210 = 11002 результатом является число 1100002 = 4810, а для исходного числа 710 = 1112 это число 111102 = 3010.

Укажите такое наименьшее число N, для которого результат работы алгоритма больше числа 253.

В ответе запишите это число в десятичной системе счисления.

Ответ


-1-   -2-   -3-   -4-   -5-